Source code for tkwant.onebody.onebody

# Copyright 2016-2022 tkwant authors.
#
# This file is part of tkwant.  It is subject to the license terms in the file
# LICENSE.rst found in the top-level directory of this distribution and at
# https://tkwant.kwant-project.org/doc/stable/pre/license.html.
# A list of tkwant authors can be found in
# the file AUTHORS.rst at the top-level directory of this distribution and at
# https://tkwant.kwant-project.org/doc/stable/pre/authors.html.
"""Tools for solving the one-body time-dependent Schrödinger equation."""

import collections.abc
import functools
from cmath import exp
import numpy as np
import scipy.sparse as sp

import kwant
import kwantspectrum

from .. import leads, _common, _logging, system
from . import kernels, solvers

__all__ = ['WaveFunction', 'ScatteringStates', 'Task', 'make_extended_system',
           '_get_time_name_from_wavefunction']


# set module logger
logger = _logging.make_logger(name=__name__)
log_func = _logging.log_func(logger)


# data formats

[docs]class Task: """Data format to store the set of quantum numbers that uniquely indentifies a onebody state and the weight of that state in the manybody sum. Attributes ---------- lead : int lead index mode : int scattering mode index energy : float energy of the onebody state momentum : float momentum of the onebody state weight : float or numpy float array weighting factor of the one-body state in the manybody sum weigth = math_weight * phys_weight, where math_weight is the weighting factor from the integration quadrature math_weight : float or numpy float array mathematical weighting factor from the numerical quadrature rule phys_weight : float physical weighting factor (fermi function, pi factors..) """ def __init__(self, lead: int, mode: int, energy: float, weight: float, math_weight: float = None, phys_weight: float = None, momentum: float = None): self.lead = lead self.mode = mode self.energy = energy self.momentum = momentum self.weight = weight self.math_weight = math_weight self.phys_weight = phys_weight def __eq__(self, other) -> bool: if not isinstance(other, Task): return NotImplemented return ( (self.lead, self.mode, self.energy, self.momentum, self.weight, self.math_weight, self.phys_weight) == (other.lead, other.mode, other.energy, other.momentum, other.weight, other.math_weight, other.phys_weight)) def __str__(self): string = "onebody task: lead={lead}, mode={mode}, " \ "energy={energy}, momentum={momentum}, " \ "weight={weight}, math_weight={math_weight}, " \ "phys_weight={phys_weight}".format(**self.__dict__) return string
def _operator_bound(operator): """Return True iff operator is bound""" try: return bool(operator._bound_onsite or operator._bound_hamiltonian) except AttributeError: if hasattr(operator, '_bound_onsite'): return bool(operator._bound_onsite) if hasattr(operator, '_bound_hamiltonian'): return bool(operator._bound_hamiltonian) return False def _get_time_name_from_wavefunction(wavefunction_type=None, derived_type=None): """Return name, initial time and onebody wave function type""" default_arg = _common.get_default_function_argument try: if wavefunction_type is None: wavefunction_type = default_arg(derived_type, 'wavefunction_type') time_name = default_arg(wavefunction_type, 'time_name') time_start = default_arg(wavefunction_type, 'time_start') except Exception: time_name = _common.time_name time_start = _common.time_start wavefunction_type = None logger.warning('retrieving initial time and time argument name from', 'the onebody wavefunction failed, use default values: ', '"time_name"={}, "time_start"={}'.format(time_name, time_start)) return time_name, time_start, wavefunction_type class _PerturbationWrap: def __init__(self, wt): self.wt = wt self.qt = None # this will hold the interaction self._perturb_set = False def size(self): return wt.size def set(self, qt): self.qt = qt self._perturb_set = True def evaluate(self, time): wt = self.wt.evaluate(time) try: qt = self.qt(time) return wt + qt except Exception: return wt def apply(self, time, ket, out): try: self.wt.apply(time, ket, out) except Exception as exept: if self.wt is None: pass else: raise exept if self._perturb_set: qt = self.qt(time) out[:] += qt * ket else: return def make_extended_system(syst, solver_type, boundaries=None, tparams=None): tmax = None if syst.leads: if not boundaries: raise ValueError('Must provide boundary conditions for ' 'systems with leads.') H0, boundary_slices = system._hamiltonian_with_boundaries(syst, boundaries, tparams) # if any boundary has a tmax, then take it. if the tmax are different, # we will always take the lowest for safety for bdr in boundaries: if bdr.tmax is not None: if tmax is not None: tmax = min(tmax, bdr.tmax) else: tmax = bdr.tmax else: if boundaries is not None: logger.warning('boundaries will not be used for extended system') H0 = syst.hamiltonian_submatrix(params=tparams, sparse=True) boundary_slices = None size = H0.shape[0] assert _common.is_type(size, 'integer') solver = solver_type(size) work = np.zeros((size,), dtype=complex) return system.ExtendedSystem(syst, H0, boundary_slices, solver, work, tmax)
[docs]class WaveFunction: r"""A class to solve the time-dependent single-particle wavefunction. The time-dependent single-particle Schrödinger equation is :math:`i \partial_t \psi = (H_0 + W(t)) \psi`, where the total Hamiltonian :math:`H(t) = H_0 + W(t)` has been splitted into a static part :math:`H_0` and a time-dependent perturbation :math:`W(t)`. Moreover, the initial condition is :math:`\psi(t_0)` and :math:`W(t)` is expected to be absent before the initial time :math:`t_0`: :math:`W(t) = 0 \,\, \text{for} \,\, t \leq t_0`. If an energy :math:`E` is provided, this routine expects that the initial condition represents the scattering state :math:`\psi_{st}` that solves the time-independent Schrödinger equation :math:`H_0 \psi_{st} = E \psi_{st}, \, \psi_{st} = \psi(t_0)`. For numerical reasons, the evolution is then performed in the variable :math:`i \partial_t \bar{\psi} = (H_0 + W(t) - E) \bar{\psi} + W(t) \psi_{st}`, where :math:`\psi = (\bar{\psi} - \psi_{st}) e^{-i E (t - t_0)}`. See `J. Weston and X. Waintal, Phys. Rev. B 93, 134506 (2016) <https://arxiv.org/abs/1510.05967>`_. """ def __init__(self, H0, W, psi_init, energy=None, params=None, time_start=_common.time_start, time_name=_common.time_name, kernel_type=kernels.default, solver_type=solvers.default, work=None, inplace=False, tmax=None): r""" Parameters ---------- H0 : array-like The static part of the Hamiltonian matrix, :math:`H_0`. W : callable or `None` Time-dependent part of the Hamiltonian matrix, :math:`W(t)`. Typically the object returned by `tkwant.system.extract_perturbation`. psi_init : array of complex The state :math:`\psi(t_0)` from which to start, defined over the central region. energy : float, optional If provided, then ``psi_init`` is assumed to be an eigenstate of energy :math:`E`. If the Hamiltonian represents an open quantum system with leads, then ``psi_init`` is assumed to be the projection of a scattering state at energy :math:`E` on to the central part of the system. params : dict, optional Extra arguments to pass to the time-dependent Hamiltonian function :math:`W(t)`, excluding time. time_start : float, optional The initial time :math:`t_0`. Default value is zero. time_name : str, optional The name of the time argument :math:`t`. Default name: *time*. kernel_type : `tkwant.onebody.solvers.default`, optional The kernel to calculate the right-hand-site of the Schrödinger equation. solver_type : `tkwant.onebody.solvers.default`, optional The solver used to evolve the wavefunction forward in time. work : `~numpy.ndarray` of complex, optional Workarray of size ``H0.shape[0]`` for performance and memory optimization. inplace : bool, optional If true and ``energy`` is not None, the term ``H0 - E`` is calculated inplace in order to save memory. If ``energy`` is None, ``inplace`` has no effect. tmax : float, optional Optional maximal time until when the boundary is valid. """ # The size of the central scattering region. The central scattering # region can be smaller as the total size (kernel.size) of the system # in case of boundary conditions. syst_size = psi_init.size hamiltonian_size = H0.shape[0] if syst_size > hamiltonian_size: raise ValueError('initial condition size={} is larger than the ' 'Hamiltonian matrix H0 size={}' .format(syst_size, hamiltonian_size)) # The perturbation W(t) must, if present, always match the size of the # central scattering region. The true leads are never time dependent. if W is not None: if not W.size == syst_size: raise ValueError('initial condition size={} must be equal ' 'to the perturbation W size={}' .format(syst_size, W.size)) if work is not None: if not work.size == hamiltonian_size: raise ValueError('work array size={} must be equal ' 'Hamiltonian matrix H0 size={}' .format(work.size, hamiltonian_size)) # transform initial psi to psibar and psi_st # note that the dgl is always solved in the variable psibar psibar = np.zeros((hamiltonian_size,), complex) if energy is not None: # starting from an arbitrary state, so we need # to be solving: H0 @ psi + W(t) @ psi psi_st = np.array(psi_init, complex) else: # we are starting from an eigenstate, so we need to # be solving: (H0 - E) @ psibar + W(t) @ (psibar + psi_st) # and psi = (psibar + psi_st) * exp(-1j * energy * time) psi_st = None psibar[:syst_size] = psi_init # get the object that will actually do the time stepping try: self.solver = solver_type(hamiltonian_size) except Exception: self.solver = solver_type if not self.solver.size == hamiltonian_size: raise ValueError('solver size={} must be equal to ' 'Hamiltonian matrix H0 size={}' .format(self.solver.size, hamiltonian_size)) # kernel to evaluate the r.h.s. of the Schödinger eq. if not inplace and energy is not None: self.kernel = kernel_type(H0 - energy * sp.eye(hamiltonian_size), W, psi_st, work) else: self.kernel = kernel_type(H0, W, psi_st, work) self._inplace = True if (inplace and energy is not None) else False self.psibar = psibar self.psi_st = psi_st self._syst_size = syst_size self.time_name = time_name self.time_start = time_start self.time = time_start self.params = params self.energy = energy self.tmax = tmax self._perturb = None
[docs] @classmethod def from_kwant(cls, syst, psi_init, boundaries=None, energy=None, params=None, time_start=_common.time_start, time_name=_common.time_name, kernel_type=kernels.default, solver_type=solvers.default, perturbation_type=kernels.PerturbationInterpolator): """Set up a time-dependent onebody wavefunction from a kwant system. Parameters ---------- syst : `kwant.builder.FiniteSystem` The low level system for which the wave functions are to be calculated. psi_init : array of complex The state from which to start, defined over the central region. boundaries : sequence of `~tkwant.leads.BoundaryBase`, optional The boundary conditions for each lead attached to ``syst``. Must be provided for a system with leads. energy : float, optional If provided, then ``psi_init`` is assumed to be an eigenstate of energy *E*. If ``syst`` has leads, then ``psi_init`` is assumed to be the projection of a scattering state at energy *E* on to the central part of the system. params : dict, optional Extra arguments to pass to the Hamiltonian of ``syst``, excluding time. time_start : float, optional The initial time :math:`t_0`. Default value is zero. time_name : str, optional The name of the time argument :math:`t`. Default name: *time*. kernel_type : `tkwant.onebody.solvers.default`, optional The kernel to calculate the right-hand-site of the Schrödinger equation. solver_type : `tkwant.onebody.solvers.default`, optional The solver used to evolve the wavefunction forward in time. perturbation_type : `tkwant.onebody.kernels.ExtractPerturbation`, optional Class to extract the time dependent perturbation :math:`W(t)` out of ``syst``. Returns ------- wave_function : `tkwant.onebody.WaveFunction` A time-dependent onebody wavefunction at the initial time. """ # add initial time to the params dict tparams = system.add_time_to_params(params, time_name=time_name, time=time_start, check_numeric_type=True) if isinstance(syst, kwant.system.System): extended_syst = make_extended_system(syst, solver_type, boundaries, tparams) elif isinstance(syst, system.ExtendedSystem): extended_syst = syst syst = extended_syst.syst else: raise TypeError('"syst" must be a finalized kwant system ' 'or a "tkwant.system.ExtendedSystem"') syst_size = extended_syst.syst.site_ranges[-1][2] if not psi_init.size == syst_size: raise ValueError('Size of the initial condition={} does not match ' 'the total number of orbitals in the central ' 'system ={}'.format(psi_init.size, syst_size)) H0 = extended_syst.H0 work = extended_syst.work solver = extended_syst.solver tmax = extended_syst.tmax try: W = syst.time_dependent_perturbation(time_name, time_start, params) except AttributeError: W = perturbation_type(syst, time_name, time_start, params=params) return cls(H0, W, psi_init, energy, params, time_start, time_name, kernel_type, solver, work, tmax=tmax)
[docs] def psi(self): r"""Return the wavefunction :math:`\psi(t)` at the current time *t*. psi : `~numpy.ndarray` The wavefunction at ``time``. If this wavefunction is for a system with leads, then the wavefunction projected onto the central region is returned. """ if self.energy is None: # psi = psibar return self.psibar[:self._syst_size].copy() # else : psi = (psibar + psi_st) * exp(-i E (t - t0)) return ((self.psibar[:self._syst_size] + self.psi_st) * exp(-1j * self.energy * (self.time - self.time_start)))
[docs] def evolve(self, time): r""" Evolve the wavefunction :math:`\psi(t)` foreward in time up to :math:`t =` ``time``. Parameters ---------- time : int or float time argument up to which the solver should be evolved """ # `time` corresponds to the future time, to which we will evolve if time < self.time: raise ValueError('Cannot evolve backwards in time') if time == self.time: return if self.tmax is not None: if time > self.tmax: logger.warning('time > tmax; time= {}, tmax= {}'. format(time, self.tmax)) # evolve forward in time if self._inplace: next_psibar = self.solver(self.psibar, self.time, time, self.kernel.rhs(self.energy)) else: next_psibar = self.solver(self.psibar, self.time, time, self.kernel.rhs()) # update internal state and return self.psibar, self.time = next_psibar, time
[docs] def evaluate(self, observable): r""" Evaluate the expectation value of an operator at the current time *t*. For an operator :math:`\hat{O}` the expectation value is :math:`O(t) = \langle \psi(t) | \hat{O} |\psi(t) \rangle`. Parameters ---------- observable : callable or `kwant.operator` An operator :math:`\hat{O}` to evaluate the expectation value. Must have the calling signature of `kwant.operator`. Returns ------- result : numpy array The expectation value :math:`O(t)` of ``observable``. """ if _operator_bound(observable): raise ValueError("Operator must not use pre-bind values") tparams = system.add_time_to_params(self.params, time_name=self.time_name, time=self.time) return observable(self.psi(), params=tparams)
[docs] def add_perturbation(self, qt): """Add a time-dependent perturbation to the Hamiltonian H(t) = H_0 + W(t) it is modified to H(t) = H_0 + W(t) + Q(t) """ if self._perturb is None: self._perturb = _PerturbationWrap(self.kernel.W) self._perturb.set(qt) self.kernel.set_W(self._perturb)
[docs] def h0(self): """Return the static Hamiltonian matrix H0 in the central scattering region""" h0 = self.kernel.H0[:self._syst_size, :self._syst_size] if self._inplace: return h0 else: return h0 + self.energy * sp.eye(self._syst_size)
[docs] def wt(self): """Return the time dependent Hamiltonian matrix W(time) in the central scattering region. If add_perturbation has been called previously, this routine returns W(t) + Q(t). """ return self.kernel.W.evaluate(self.time)
[docs] def hamiltonian(self): """Return the full Hamiltonian matrix H = H0 + W(time) in the central scattering region. If add_perturbation has been called previously, this routine returns H0 + W(t) + Q(t). """ return self.h0() + self.wt()
[docs]class ScatteringStates(collections.abc.Iterable): """Calculate time-dependent wavefunctions starting in an equilibrium scattering state""" def __init__(self, syst, energy, lead, tmax=None, params=None, spectra=None, boundaries=None, equilibrium_solver=kwant.wave_function, wavefunction_type=WaveFunction.from_kwant): """ Parameters ---------- syst : `kwant.builder.FiniteSystem` The low level system for which the wave functions are to be calculated. energy : float Energy of the scattering eigenstate. lead : int Lead index to construct the scattering state. tmax : float, optional The maximum time up to which to simulate. Sets the boundary conditions such that they are guaranteed to be correct up to 'tmax'. Mutually exclusive with 'boundaries'. params : dict, optional Extra arguments to pass to the Hamiltonian of ``syst``, excluding time. spectra : sequence of `kwantspectrum.spectrum`, optional Energy dispersion :math:`E_n(k)` for the leads. Must have the same length as ``syst.leads``. Required only if no ``boundaries`` are provided. If needed but not present, it will be calculated on the fly from `syst.leads`. boundaries : sequence of `~tkwant.leads.BoundaryBase`, optional The boundary conditions for each lead attached to ``syst``. Mutually exclusive with 'tmax'. equilibrium_solver : `kwant.wave_function`, optional Solver for initial equilibrium scattering problem. wavefunction_type : `WaveFunction`, optional One-body time-dependent wave function. Name of the time argument and initial time are taken from this class. If this is not possible, default values are used as a fallback. Notes ----- An instance of this class behaves like a sequence of `WaveFunction` instances. The index in the sequence corresponds to the scattering mode. The name of the time argument (`time_name`) and the initial time of the evolution (`time_start`) are taken from the default values of the `WaveFunction.__init__` method. Changing the default values by partial prebind (e.g. via functools) is possible. """ if isinstance(syst, kwant.system.System): extended_syst = None elif isinstance(syst, system.ExtendedSystem): if boundaries is not None: logger.warning('boundaries will not be used for extended system') extended_syst = syst syst = extended_syst.syst else: raise TypeError('"syst" must be a finalized kwant system ' 'or a "tkwant.system.ExtendedSystem"') if not syst.leads: raise AttributeError("system has no leads.") if tmax is not None and boundaries is not None: raise ValueError("'boundaries' and 'tmax' are mutually exclusive.") if not _common.is_type(energy, 'real_number'): raise TypeError('energy must be a real number') if not _common.is_type(lead, 'integer'): raise TypeError('lead index must be an integer') if lead >= len(syst.leads): raise ValueError("lead index must be smaller than {}.".format(len(syst.leads))) # get initial time and time argument name from the onebody wavefunction time_name, time_start, _ = _get_time_name_from_wavefunction(wavefunction_type) # add initial time to the params dict tparams = system.add_time_to_params(params, time_name=time_name, time=time_start, check_numeric_type=True) if extended_syst is None: solver_type = _common.get_default_function_argument(wavefunction_type, 'solver_type') if boundaries is None: if spectra is None: spectra = kwantspectrum.spectra(syst.leads, params=tparams) boundaries = leads.automatic_boundary(spectra, tmax) extended_syst = make_extended_system(syst, solver_type, boundaries, tparams) scattering_states = equilibrium_solver(syst, energy=energy, params=tparams) self._psi_st = scattering_states(lead) self._wavefunction = functools.partial(wavefunction_type, syst=extended_syst, params=params) self.energy = energy self.lead = lead def __getitem__(self, mode): """Return a time-dependent wavefunction for the corresponding scattering mode. Parameters ---------- mode : int Mode index of the scattering wavefunction. Returns ------- wave_function : `WaveFunction` The time-dependent wave function starting in the scattering mode. Two additional attributes, ``lead`` and ``mode`` are added to the wave function. """ if not _common.is_type(mode, 'integer'): raise TypeError('mode index must be an integer') if mode >= len(self._psi_st): raise KeyError('no open scattering mode={}; ' 'number of open modes={} for energy={} and lead={}' .format(self.lead, mode, self.energy, len(self._psi_st))) psi = self._wavefunction(psi_init=self._psi_st[mode], energy=self.energy) psi.lead = self.lead psi.mode = mode return psi def __len__(self): """Return the number of open scattering modes.""" return len(self._psi_st) def __iter__(self): """Return an iterable sequence of all open modes.""" return (self[mode] for mode in range(len(self)))